Nim コンパイラ ユーザガイド

作成者: アンドレアス・ルンプフ
バージョン: 1.2.0

"おお、ハッカーよ。煙と蒸気を吐き、我が回廊を走り抜ける肉塊と骸骨の惨めな異形者よ。完璧なる神の機関へ挑む術でもあるというのかね?"

はじめに

このドキュメントでは各種プラットフォームをサポートしている Nim コンパイラの用法について解説しています。つまり、プログラミング言語 Nim の説明 (definition) ではありません (マニュアルで扱います)。

Nim は MIT ライセンスのフリーソフトウェアです。

コンパイラの用法

コマンドラインスイッチ

基本的なコマンドラインスイッチは、

用法:

nim コマンド [オプション] [プロジェクトファイル] [引数]
コマンド:
compile, cプロジェクトをデフォルトのコードジェネレータ (C 言語) でコンパイルします
docinputfile (入力ファイル) からドキュメントを生成します
引数:
引数はプログラムの実行時に渡されます (--run オプション選択時)
オプション:
-p, --path:パス指定のパスを検索パスへ追加します
-d, --define:シンボル(:値)条件付きシンボルを定義します (オプションとして: シンボルの値を定義できます。詳細は: "コンパイル時のプラグマ定義" を参照してください)
-u, --undef:シンボル条件付きシンボルを未定義にします
-f, --forceBuild:on|off強制的にモジュールをすべて再ビルドします
--stackTrace:on|offスタックトレース: 入 (on) ・切 (off)
--lineTrace:on|offライントレース: 入 (on) ・切 (off)
--threads:on|offマルチスレッドサポート: 入 (on) ・切 (off)
-x, --checks:on|offランタイム全体検査: 入 (on) ・切 (off)
-a, --assertions:on|offアサーション: 入 (on) ・切 (off)
--opt:none|speed|size最適化方法: なし (none)、速度重視 (speed)、バイナリサイズ重視 (size) 備考: -d:release を使うとリリースビルドになります!
--debugger:nativeネイティブ・デバッガ (gdb) を使用します
--app:console|gui|lib|staticlib生成アプリケーションの種類: コンソールアプリケーション (console)、 GUI アプリケーション (gui)、共有ライブラリ (lib)、静的ライブラリ (staticlib)
-r, --run引数を指定してコンパイル後のプログラムを実行します
--fullhelpコマンドラインスイッチの説明をすべて表示します
-h, --helpこのヘルプを表示します
-v, --versionバージョン情報の詳細を表示します

注意として、単文字オプションの引数はコロンで指定してください。例えば -p:パス とします。


高度なコマンドラインスイッチは:

高度なコマンド:
compileToC, ccプロジェクトを C コードジェネレータでコンパイルします
compileToCpp, cppC++ コードのプロジェクトをコンパイルします
compileToOC, objcObjective C コードのプロジェクトをコンパイルします
jsJavascript のプロジェクトをコンパイルします
eNimscript ファイルを実行します
rst2htmlreStructuredText ファイルを HTML へ変換します
rst2texreStructuredText ファイルを TeX へ変換します
jsondocjson ファイルのドキュメンテーションを抽出します
ctagstags ファイルを作成します
buildIndexドキュメンテーション全体の索引をビルドします
genDependモジュールの依存関係図を記した DOT ファイルを作成します
dump定義条件と検索パスをすべてダンプします 関連: --dump.format:json (` | jq` で有用です)
checkプロジェクトのシンタックスとセマンティクスを確認します
ランタイム検査 (-x を参照):
--objChecks:on|offobj 変換時の検査: 入 (on) ・切 (off)
--fieldChecks:on|offturn case variant field checks on|off
--rangeChecks:on|offturn range checks on|off
--boundChecks:on|offturn bound checks on|off
--overflowChecks:on|offturn int over-/underflow checks on|off
--floatChecks:on|offturn all floating point (NaN/Inf) checks on|off
--nanChecks:on|offturn NaN checks on|off
--infChecks:on|offturn Inf checks on|off
--nilChecks:on|offturn nil checks on|off
--refChecks:on|offturn ref checks on|off (only for --newruntime)
Advanced options:
-o:FILE, --out:FILEset the output filename
--outdir:DIRset the path where the output file will be written
--stdout:on|offoutput to stdout
--colors:on|offturn compiler messages coloring on|off
--listFullPaths:on|offlist full paths in messages
-w:on|off|list, --warnings:on|off|listturn all warnings on|off or list all available
--warning[X]:on|offturn specific warning X on|off
--hints:on|off|listturn all hints on|off or list all available
--hint[X]:on|offturn specific hint X on|off
--styleCheck:off|hint|errorproduce hints or errors for Nim identifiers that do not adhere to Nim's official style guide https://nim-lang.org/docs/nep1.html
--showAllMismatches:on|offshow all mismatching candidates in overloading resolution
--lib:PATHset the system library path
--import:PATHadd an automatically imported module
--include:PATHadd an automatically included module
--nimcache:PATHset the path used for generated files see also https://nim-lang.org/docs/nimc.html#compiler-usage-generated-c-code-directory
-c, --compileOnly:on|offcompile Nim files only; do not assemble or link
--noLinking:on|offcompile Nim and generated files but do not link
--noMain:on|offdo not generate a main procedure
--genScript:on|offgenerate a compile script (in the 'nimcache' subdirectory named 'compile_$$project$$scriptext'), implies --compileOnly
--genDeps:on|offgenerate a '.deps' file containing the dependencies
--os:シンボルset the target operating system (cross-compilation)
--cpu:シンボルset the target processor (cross-compilation)
--debuginfo:on|offenables debug information
-t, --passC:オプションpass an option to the C compiler
-l, --passL:オプションpass an option to the linker
--cc:SYMBOLspecify the C compiler
--cincludes:ディレクトリmodify the C compiler header search path
--clibdir:ディレクトリmodify the linker library search path
--clib:ライブラリ名link an additional C library (you should omit platform-specific extensions)
--projectdocument the whole project (doc2)
--docRoot:pathnim doc --docRoot:/foo --project --outdir:docs /foo/sub/main.nim generates: docs/sub/main.html if path == @pkg, will use nimble file enclosing dir if path == @path, will use first matching dir in --path if path == @default (the default and most useful), will use best match among @pkg,@path. if these are nonexistant, will use project path
--docSeeSrcUrl:urlactivate 'see source' for doc and doc2 commands (see doc.item.seesrc in config/nimdoc.cfg)
--docInternalalso generate documentation for non-exported symbols
--lineDir:on|offgeneration of #line directive on|off
--embedsrc:on|offembeds the original source code as comments in the generated output
--threadanalysis:on|offturn thread analysis on|off
--tlsEmulation:on|offturn thread local storage emulation on|off
--taintMode:on|offturn taint mode on|off
--implicitStatic:on|offturn implicit compile time evaluation on|off
--trmacros:on|offturn term rewriting macros on|off
--multimethods:on|offturn multi-methods on|off
--memTracker:on|offturn memory tracker on|off
--hotCodeReloading:on|offturn support for hot code reloading on|off
--excessiveStackTrace:on|offstack traces use full file paths
--stackTraceMsgs:on|offenable user defined stack frame msgs via setFrameMsg
--oldNewlines:on|offturn on|off the old behaviour of "n"
--laxStrings:on|offwhen turned on, accessing the zero terminator in strings is allowed; only for backwards compatibility
--nilseqs:on|offallow 'nil' for strings/seqs for backwards compatibility
--seqsv2:on|offuse the new string/seq implementation based on destructors
--oldast:on|offuse old AST for backwards compatibility
--skipCfg:on|offdo not read the nim installation's configuration file
--skipUserCfg:on|offdo not read the user's configuration file
--skipParentCfg:on|offdo not read the parent dirs' configuration files
--skipProjCfg:on|offdo not read the project's configuration file
--gc:refc|markAndSweep|boehm|go|none|regionsselect the GC to use; default is 'refc'
--exceptions:setjmp|cpp|goto|quirkyselect the exception handling implementation
--index:on|offturn index file generation on|off
--putenv:キー=値環境変数の設定
--NimblePath:パスadd a path for Nimble support
--noNimblePathdeactivate the Nimble path
--clearNimblePathempty the list of Nimble package search paths
--cppCompileToNamespace:namespaceuse the provided namespace for the generated C++ code, if no namespace is provided "Nim" will be used
--expandMacro:マクロdump every generated AST from MACRO
--excludePath:パスexclude a path from the list of search paths
--dynlibOverride:シンボルmarks SYMBOL so that dynlib:SYMBOL has no effect and can be statically linked instead; symbol matching is fuzzy so that --dynlibOverride:lua matches dynlib: "liblua.so.3"
--dynlibOverrideAlldisables the effects of the dynlib pragma
--listCmdlist the compilation commands; can be combined with --hint:exec:on and --hint:link:on
--asmproduce assembler code
--parallelBuild:0|1|...perform a parallel build value = number of processors (0 for auto-detect)
--incremental:on|offonly recompile the changed modules (experimental!)
--verbosity:0|1|2|3set Nim's verbosity level (1 is default)
--errorMax:Nstop compilation after N errors; 0 means unlimited
--maxLoopIterationsVM:Nset max iterations for all VM loops
--experimental:$1enable experimental language feature
--legacy:$2enable obsolete/legacy language feature
--useVersion:1.0Nim バージョン X のNim コンパイラををエミュレートします
--newruntimeuse an alternative runtime that uses destructors and that uses a shared heap via -d:useMalloc
--profiler:on|offenable profiling; requires import nimprof, and works better with --stackTrace:on see also https://nim-lang.github.io/Nim/estp.html
--benchmarkVM:on|offenable benchmarking of VM code with cpuTime()
--sinkInference:on|offen-/disable sink parameter inference (default: on)
--panics:on|offturn panics into process terminations (default: off)

警告のリスト

警告は --warning[名前]:on|off または push プラグマで個別に有効化できます。

名前説明
CannotOpenFileコンパイラの動作に必須ではないファイルを開けない。
OctalEscape非対応の八進数シーケンスがコードにある。
Deprecated廃止されたシンボルをコードで使用している。
ConfigDeprecated廃止されたコンフィギュレーション・ファイルをプロジェクトで使用している。
SmallLshouldNotBeUsed小文字 'l' は識別子として使わないでください。
EachIdentIsTuple紛らわしい var 定義がコードにある。
Userユーザ定義による警告。

ヒントのリスト

ヒントは --hint[名前]:on|off または push プラグマで個別に有効化できます。

名前説明
CCC コンパイラが呼び出されたときに表示。
CodeBegin
CodeEnd
CondTrue
Confコンフィギュレーション・ファイルがロードされた。
ConvToBaseNotNeeded
ConvFromXtoItselfNotNeeded
Dependency
Execプログラムが実行された。
ExprAlwaysX
ExtendedContext
GCStatsガーベジ・コレクターの統計をダンプ。
GlobalVarグローバル変数の宣言を表示。
LineTooLong行の最大長を超過した。
Linkリンク処理段階。
Name
Path検索パスの変更。
Pattern
Performance
Processing中間生成物 (artifact) をコンパイルした。
QuitCalled
Source診断メッセージが発生したソースの行。
StackTrace
Success, SuccessXライブラリまたはバイナリのコンパイルに成功した。
User
UserRaw
XDeclaredButNotUsed未使用のシンボルがコードにある。

詳細表示レベル

レベル説明
0コンパイラの最小出力レベル。
1ほかのモジュール、または compile プラグマによるインポートなどコンパイルを行ったファイルのコンパイル状況を表示します。これはデフォルトのレベルです。
2コンパイルの統計表示、完成版のバイナリでロードされる動的ライブラリの一覧表示、およびコンパイル中にフィルタが使用されたときはソースコードのフィルタの適用結果を標準出力へダンプします。
3前述のレベルに加えて、コンパイル開発者向けのデバッグ用スタックトレースをダンプします。

コンパイル時のシンボル

Through the -d:x or --define:x switch you can define compile time symbols for conditional compilation. The defined switches can be checked in source code with the when statement and defined proc. The typical use of this switch is to enable builds in release mode (-d:release) where optimizations are enabled for better performance. Another common use is the -d:ssl switch to activate SSL sockets.

Additionally, you may pass a value along with the symbol: -d:x=y which may be used in conjunction with the compile time define pragmas to override symbols during build time.

Compile time symbols are completely case insensitive and underscores are ignored too. --define:FOO and --define:foo are identical.

Compile time symbols starting with the nim prefix are reserved for the implementation and should not be used elsewhere.

コンフィギュレーション・ファイル

Note: The project file name is the name of the .nim file that is passed as a command line argument to the compiler.

The nim executable processes configuration files in the following directories (in this order; later files overwrite previous settings):

  1. $nim/config/nim.cfg, /etc/nim/nim.cfg (UNIX) or <Nim's installation directory>\config\nim.cfg (Windows). This file can be skipped with the --skipCfg command line option.
  2. If environment variable XDG_CONFIG_HOME is defined, $XDG_CONFIG_HOME/nim/nim.cfg or ~/.config/nim/nim.cfg (POSIX) or %APPDATA%/nim/nim.cfg (Windows). このファイルはコマンドラインオプション --skipUserCfg でスキップできます。
  3. $parentDir/nim.cfg where $parentDir stands for any parent directory of the project file's path. このファイルはコマンドラインオプション --skipParentCfg でスキップできます。
  4. $projectDir/nim.cfg where $projectDir stands for the project file's path. このファイルはコマンドラインオプション --skipProjCfg でスキップできます。
  5. A project can also have a project specific configuration file named $project.nim.cfg that resides in the same directory as $project.nim. このファイルはコマンドラインオプション --skipProjCfg でスキップできます。

Command line settings have priority over configuration file settings.

The default build of a project is a debug build. To compile a release build define the release symbol:

nim c -d:release myproject.nim

To compile a dangerous release build define the danger symbol:

nim c -d:danger myproject.nim

検索パスの処理

Nim has the concept of a global search path (PATH) that is queried to determine where to find imported modules or include files. If multiple files are found an ambiguity error is produced.

nim dump shows the contents of the PATH.

However before the PATH is used the current directory is checked for the file's existence. So if PATH contains $lib and $lib/bar and the directory structure looks like this:

$lib/x.nim
$lib/bar/x.nim
foo/x.nim
foo/main.nim
other.nim

And main imports x, foo/x is imported. If other imports x then both $lib/x.nim and $lib/bar/x.nim match but $lib/x.nim is used as it is the first match.

Generated C code directory

The generated files that Nim produces all go into a subdirectory called nimcache. Its full path is

  • $XDG_CACHE_HOME/nim/$projectname(_r|_d) or ~/.cache/nim/$projectname(_r|_d) on Posix
  • $HOME/nimcache/$projectname(_r|_d) on Windows.

The _r suffix is used for release builds, _d is for debug builds.

This makes it easy to delete all generated files.

The --nimcache compiler switch can be used to to change the nimcache directory.

However, the generated C code is not platform independent. C code generated for Linux does not compile on Windows, for instance. The comment on top of the C file lists the OS, CPU and CC the file has been compiled for.

コンパイラの選択

デフォルトのコンパイラから別のコンパイラへ変更するには (コマンドラインにて):

nim c --cc:llvm_gcc --compile_only myfile.nim

これは config\nim.cfg で定義されている lvm_gcc の構成を使います。

同じプロジェクトで異種コンパイラを用いてコンパイルされたコードが nimcache によりキャッシュ済みならば、 -f フラグを指定してファイルをすべて強制再コンパイルしてください。

デフォルトのコンパイラ構成は config\nim.cfg の先頭に定義されています。この設定をコンパイラへ反映するには koch で Nim を(再)ビルドしてください。

クロスコンパイル

To cross compile, use for example:

nim c --cpu:i386 --os:linux --compileOnly --genScript myproject.nim

Then move the C code and the compile script compile_myproject.sh to your Linux i386 machine and run the script.

Another way is to make Nim invoke a cross compiler toolchain:

nim c --cpu:arm --os:linux myproject.nim

For cross compilation, the compiler invokes a C compiler named like $cpu.$os.$cc (for example arm.linux.gcc) and the configuration system is used to provide meaningful defaults. For example for ARM your configuration file should contain something like:

arm.linux.gcc.path = "/usr/bin"
arm.linux.gcc.exe = "arm-linux-gcc"
arm.linux.gcc.linkerexe = "arm-linux-gcc"

Windows 用のクロスコンパイル

Linux または macOS から Windows のクロスコンパイルをするには MinGW-w64 ツールチェーンを使います:

nim c -d:mingw myproject.nim

CPU アーキテクチャを切り替えるには --cpu:i386 または --cpu:amd64 を指定します。

MinGW-w64 ツールチェーンは下記の手順でインストールします:

Ubuntu: apt install mingw-w64
CentOS: yum install mingw32-gcc | mingw64-gcc - requires EPEL
OSX: brew install mingw-w64

Android 用のクロスコンパイル

There are two ways to compile for Android: terminal programs (Termux) and with the NDK (Android Native Development Kit).

First one is to treat Android as a simple Linux and use Termux to connect and run the Nim compiler directly on android as if it was Linux. These programs are console only programs that can't be distributed in the Play Store.

Use regular nim c inside termux to make Android terminal programs.

Normal Android apps are written in Java, to use Nim inside an Android app you need a small Java stub that calls out to a native library written in Nim using the NDK. You can also use native-acitivty to have the Java stub be auto generated for you.

Use nim c -c --cpu:arm --os:android -d:androidNDK --noMain:on to generate the C source files you need to include in your Android Studio project. Add the generated C files to CMake build script in your Android project. Then do the final compile with Android Studio which uses Gradle to call CMake to compile the project.

Because Nim is part of a library it can't have its own c style main() so you would need to define your own android_main and init the Java environment, or use a library like SDL2 or GLFM to do it. After the Android stuff is done, it's very important to call NimMain() in order to initialize Nim's garbage collector and to run the top level statements of your program.

proc NimMain() {.importc.}
proc glfmMain*(display: ptr GLFMDisplay) {.exportc.} =
  NimMain() # initialize garbage collector memory, types and stack

iOS 用のクロスコンパイル

To cross compile for iOS you need to be on a MacOS computer and use XCode. Normal languages for iOS development are Swift and Objective C. Both of these use LLVM and can be compiled into object files linked together with C, C++ or Objective C code produced by Nim.

Use nim c -c --os:ios --noMain:on to generate C files and include them in your XCode project. Then you can use XCode to compile, link, package and sign everything.

Because Nim is part of a library it can't have its own c style main() so you would need to define main that calls autoreleasepool and UIApplicationMain to do it, or use a library like SDL2 or GLFM. After the iOS setup is done, it's very important to call NimMain() in order to initialize Nim's garbage collector and to run the top level statements of your program.

proc NimMain() {.importc.}
proc glfmMain*(display: ptr GLFMDisplay) {.exportc.} =
  NimMain() # initialize garbage collector memory, types and stack

Note: XCodes "make clean" gets confused about the genreated nim.c files, so you need to clean those files manually to do a clean build.

Nintendo Switch 用のクロスコンパイル

Simply add --os:nintendoswitch to your usual nim c or nim cpp command and set the passC and passL command line switches to something like:

nim c ... --passC="-I$DEVKITPRO/libnx/include" ...
--passL="-specs=$DEVKITPRO/libnx/switch.specs -L$DEVKITPRO/libnx/lib -lnx"

or setup a nim.cfg file like so:

#nim.cfg
--passC="-I$DEVKITPRO/libnx/include"
--passL="-specs=$DEVKITPRO/libnx/switch.specs -L$DEVKITPRO/libnx/lib -lnx"

The DevkitPro setup must be the same as the default with their new installer here for Mac/Linux or here for Windows.

For example, with the above mentioned config:

nim c --os:nintendoswitch switchhomebrew.nim

This will generate a file called switchhomebrew.elf which can then be turned into an nro file with the elf2nro tool in the DevkitPro release. Examples can be found at the nim-libnx github repo.

There are a few things that don't work because the DevkitPro libraries don't support them. They are:

  1. Waiting for a subprocess to finish. A subprocess can be started, but right now it can't be waited on, which sort of makes subprocesses a bit hard to use
  2. Dynamic calls. DevkitPro libraries have no dlopen/dlclose functions.
  3. Command line parameters. It doesn't make sense to have these for a console anyways, so no big deal here.
  4. mqueue. Sadly there are no mqueue headers.
  5. ucontext. No headers for these either. No coroutines for now :(
  6. nl_types. No headers for this.

DLL の生成

Nim supports the generation of DLLs. However, there must be only one instance of the GC per process/address space. This instance is contained in nimrtl.dll. This means that every generated Nim DLL depends on nimrtl.dll. To generate the "nimrtl.dll" file, use the command:

nim c -d:release lib/nimrtl.nim

To link against nimrtl.dll use the command:

nim c -d:useNimRtl myprog.nim

Note: Currently the creation of nimrtl.dll with thread support has never been tested and is unlikely to work!

Additional compilation switches

The standard library supports a growing number of useX conditional defines affecting how some features are implemented. This section tries to give a complete list.

DefineEffect
releaseTurns on the optimizer. More aggressive optimizations are possible, eg: --passC:-ffast-math (but see issue #10305)
dangerTurns off all runtime checks and turns on the optimizer.
useForkMakes osproc use fork instead of posix_spawn.
useNimRtlCompile and link against nimrtl.dll.
useMallocMakes Nim use C's malloc instead of Nim's own memory manager, albeit prefixing each allocation with its size to support clearing memory on reallocation. This only works with gc:none and with --newruntime.
useRealtimeGCEnables support of Nim's GC for soft realtime systems. See the documentation of the gc for further information.
logGCEnable GC logging to stdout.
nodejsThe JS target is actually node.js.
sslEnables OpenSSL support for the sockets module.
memProfilerEnables memory profiling for the native GC.
uClibcUse uClibc instead of libc. (Relevant for Unix-like OSes)
checkAbiWhen using types from C headers, add checks that compare what's in the Nim file with what's in the C header (requires a C compiler with _Static_assert support, like any C11 compiler)
tempDirThis symbol takes a string as its value, like --define:tempDir:/some/temp/path to override the temporary directory returned by os.getTempDir(). The value should end with a directory separator character. (Relevant for the Android platform)
useShPathThis symbol takes a string as its value, like --define:useShPath:/opt/sh/bin/sh to override the path for the sh binary, in cases where it is not located in the default location /bin/sh.
noSignalHandlerDisable the crash handler from system.nim.

Additional Features

This section describes Nim's additional features that are not listed in the Nim manual. Some of the features here only make sense for the C code generator and are subject to change.

LineDir オプション

The lineDir option can be turned on or off. If turned on the generated C code contains #line directives. This may be helpful for debugging with GDB.

StackTrace オプション

If the stackTrace option is turned on, the generated C contains code to ensure that proper stack traces are given if the program crashes or an uncaught exception is raised.

LineTrace オプション

The lineTrace option implies the stackTrace option. If turned on, the generated C contains code to ensure that proper stack traces with line number information are given if the program crashes or an uncaught exception is raised.

DynlibOverride

By default Nim's dynlib pragma causes the compiler to generate GetProcAddress (or their Unix counterparts) calls to bind to a DLL. With the dynlibOverride command line switch this can be prevented and then via --passL the static library can be linked against. For instance, to link statically against Lua this command might work on Linux:

nim c --dynlibOverride:lua --passL:liblua.lib program.nim

Backend language options

The typical compiler usage involves using the compile or c command to transform a .nim file into one or more .c files which are then compiled with the platform's C compiler into a static binary. However there are other commands to compile to C++, Objective-C or JavaScript. More details can be read in the Nim Backend Integration document.

Nim documentation tools

Nim provides the doc and doc2 commands to generate HTML documentation from .nim source files. Only exported symbols will appear in the output. For more details see the docgen documentation.

Nim idetools integration

Nim provides language integration with external IDEs through the idetools command. See the documentation of idetools for further information.

Nim for embedded systems

While the default Nim configuration is targeted for optimal performance on modern PC hardware and operating systems with ample memory, it is very well possible to run Nim code and a good part of the Nim standard libraries on small embedded microprocessors with only a few kilobytes of memory.

A good start is to use the any operating target together with the malloc memory allocator and the arc garbage collector. 用例:

nim c --os:any --gc:arc -d:useMalloc [...] x.nim

  • --gc:arc will enable the reference counting memory management instead of the default garbage collector. This enables Nim to use heap memory which is required for strings and seqs, for example.
  • The --os:any target makes sure Nim does not depend on any specific operating system primitives. Your platform should support only some basic ANSI C library stdlib and stdio functions which should be available on almost any platform.
  • The -d:useMalloc option configures Nim to use only the standard C memory manage primitives malloc(), free(), realloc().

If your platform does not provide these functions it should be trivial to provide an implementation for them and link these to your program.

For targets with very restricted memory, it might be beneficial to pass some additional flags to both the Nim compiler and the C compiler and/or linker to optimize the build for size. For example, the following flags can be used when targeting a gcc compiler:

--opt:size --passC:-flto --passL:-flto

The --opt:size flag instructs Nim to optimize code generation for small size (with the help of the C compiler), the flto flags enable link-time optimization in the compiler and linker.

Check the Cross compilation section for instructions how to compile the program for your target.

Nim for realtime systems

See the documentation of Nim's soft realtime GC for further information.

Signal handling in Nim

The Nim programming language has no concept of Posix's signal handling mechanisms. However, the standard library offers some rudimentary support for signal handling, in particular, segmentation faults are turned into fatal errors that produce a stack trace. This can be disabled with the -d:noSignalHandler switch.

Optimizing for Nim

Nim has no separate optimizer, but the C code that is produced is very efficient. Most C compilers have excellent optimizers, so usually it is not needed to optimize one's code. Nim has been designed to encourage efficient code: The most readable code in Nim is often the most efficient too.

However, sometimes one has to optimize. Do it in the following order:

  1. switch off the embedded debugger (it is slow!)
  2. turn on the optimizer and turn off runtime checks
  3. profile your code to find where the bottlenecks are
  4. try to find a better algorithm
  5. do low-level optimizations

This section can only help you with the last item.

Optimizing string handling

String assignments are sometimes expensive in Nim: They are required to copy the whole string. However, the compiler is often smart enough to not copy strings. Due to the argument passing semantics, strings are never copied when passed to subroutines. The compiler does not copy strings that are a result from a procedure call, because the callee returns a new string anyway. Thus it is efficient to do:

var s = procA() # assignment will not copy the string; procA allocates a new
                # string already

However it is not efficient to do:

var s = varA    # assignment has to copy the whole string into a new buffer!

For let symbols a copy is not always necessary:

let s = varA    # may only copy a pointer if it safe to do so

If you know what you're doing, you can also mark single string (or sequence) objects as shallow:

var s = "abc"
shallow(s) # mark 's' as shallow string
var x = s  # now might not copy the string!

Usage of shallow is always safe once you know the string won't be modified anymore, similar to Ruby's freeze.

The compiler optimizes string case statements: A hashing scheme is used for them if several different string constants are used. So code like this is reasonably efficient:

case normalize(k.key)
of "name": c.name = v
of "displayname": c.displayName = v
of "version": c.version = v
of "os": c.oses = split(v, {';'})
of "cpu": c.cpus = split(v, {';'})
of "authors": c.authors = split(v, {';'})
of "description": c.description = v
of "app":
  case normalize(v)
  of "console": c.app = appConsole
  of "gui": c.app = appGUI
  else: quit(errorStr(p, "expected: console or gui"))
of "license": c.license = UnixToNativePath(k.value)
else: quit(errorStr(p, "unknown variable: " & k.key))